Publications‎ > ‎

Bare-Metal Performance for Virtual Machines with Exitless Interrupts

Direct device assignment enhances the performance of guest virtual machines by allowing them to communicate with I/O devices without host involvement. But even with device assignment, guests are still unable to approach bare-metal performance, because the host intercepts all interrupts, including those generated by assigned devices to signal to guests the completion of their I/O requests. The host involvement induces multiple unwarranted guest/host context switches, which significantly hamper the performance of I/O intensive workloads. To solve this problem, we present ExitLess Interrupts (ELI), a software-only approach for handling interrupts within guest virtual machines directly and securely. By removing the host from the interrupt handling path, ELI improves the throughput and latency of unmodified, untrusted guests by 1.3×–1.6×, allowing them to reach 97–100% of bare-metal performance even for the most demanding I/O-intensive workloads.